PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
نویسندگان
چکیده
We present PPFNet Point Pair Feature NETwork for deeply learning a globally informed 3D local feature descriptor to find correspondences in unorganized point clouds. PPFNet learns local descriptors on pure geometry and is highly aware of the global context, an important cue in deep learning. Our 3D representation is computed as a collection of point-pair-features combined with the points and normals within a local vicinity. Our permutation invariant network design is inspired by PointNet and sets PPFNet to be ordering-free. As opposed to voxelization, our method is able to consume raw point clouds to exploit the full sparsity. PPFNet uses a novel N-tuple loss and architecture injecting the global information naturally into the local descriptor. It shows that context awareness also boosts the local feature representation. Qualitative and quantitative evaluations of our network suggest increased recall, improved robustness and invariance as well as a vital step in the 3D descriptor extraction performance.
منابع مشابه
A novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملRobust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions
Robust solutions for correspondence matching of deformable objects are prerequisite for many applications, particularly for analyzing and comparing soft tissue organs in the medical domain. However, this has proved very difficult for 3D model surfaces, especially for approximate symmetric organs such as the liver, the stomach and the head. In this paper, we propose a novel approach to establish...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملExamining the Effects of Key Point Detector and Descriptors on 3D Visual SLAM
Mobile robots need to continuously navigate their environment. Doing so necessitates using sensor data to both map that environment and locate their position. A modular framework for performing 3D Simultaneous Localization and Mapping (SLAM) for use with indoor robots has been developed that addresses this problem. This framework was developed using a Microsoft KinectTM sensor and works by extr...
متن کاملJunction-aware shape descriptor for 3D articulated models using local shape-radius variation
An articulated model is composed of a set of rigid parts connected by some flexible junctions. The junction, as a critical local feature, provides valuable information for many 3D semantic analysis applications such as feature recognition, semantic segmentation, shape matching, motion tracking and functional prediction. However, efficient description and detection of junctions still remain a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.02669 شماره
صفحات -
تاریخ انتشار 2018